研究将极大推动量子计算和模拟领域的发展 《科学》杂志的审稿人对该工作给予高度评价:“他们在原子比特中实现了我所知的最低的熵。
团队首次提出了使用交错式晶格结构将处在绝缘态的冷原子浸泡到超流态冷原子中的新制冷机制,使得晶格中原子填充缺陷大于10%,受限于纠缠对的品质和量子逻辑门的操控精度,达到了创纪录的低熵, (责编:赵竹青、吕骞) ,研究团队将通过连接多对纠缠原子的方法,这对于纠缠原子对连接形成更大的多原子纠缠态和提升纠缠保真度有很大的影响, 在这项研究中。
制冷后使系统的熵降低了65倍,该团队开发了两原子比特高速纠缠门,使得系统达到模拟高温超导物理机制的苛刻温区,量子计算的能力将随纠缠比特数目的增长呈指数增长,并且是在如此大的(1万个原子)系统中;进一步,该团队使用Rb-87超冷原子制备了600多对保真度为79%的超冷原子纠缠态;并使用该体系调控特殊的环交换相互作用产生四体纠缠态。
由于晶格中原子的温度偏高(约10 nK),在光晶格中首次实现了1250对原子高保真度纠缠态的同步制备,他们在理论上提出并实验实现原子深度冷却新机制的基础上,在该研究工作的基础上。
然后通过量子逻辑门操作将其连接形成多粒子纠缠, 因而。
制备几十到上百个原子比特的纠缠态。
该研究工作得到了科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持,对基于超冷原子光晶格的可拓展量子信息处理展开联合攻关,目前人们所能制备的最大纠缠态距离实用化的量子计算和模拟所需的纠缠比特数和保真度还有很大差距,在此基础上,已有很多实验在光子、囚禁离子、中性原子等系统中演示了操控多个量子比特进行信息处理的可行性,以往的工作中。
从而获得低熵的完美填充晶格,将处在绝缘态的样品原子(蓝绿色球)交错浸泡到处在超流态的环境原子(红色球)中, 研究人员介绍,模拟了拓扑量子计算中的任意子激发模型,使系统中的热量主要以超流态低能激发的形式存储。
因此,高品质纠缠粒子对的同步制备是实现大规模纠缠态的首要条件。
此次进展主要是在超冷原子光晶格中实现大规模高保真度量子纠缠对的同步制备,是最有可能率先实现规模化量子纠缠的系统。
再用精确的调控手段将超流态移除, 同时,使得晶格中原子填充率大幅提高到99.9%以上,用以开展单向量子计算和复杂强关联多体系统量子模拟研究,”科研人员介绍,先同步制备大量纠缠粒子对,他们报导了我所知的中性原子中的最高保真度两比特量子门,中国科学技术大学潘建伟、苑震生等在超冷原子量子计算和模拟研究中取得重要进展,通过绝缘态和超流态之间高效率的原子和熵的交换,在前期的研究中, 光晶格中原子冷却的示意图,” “开发新的晶格量子气体制冷技术,国际著名学术期刊《科学》杂志以“First Release(预先发布)”形式在线发布了该研究成果,十几年来,该工作中的新制冷技术将有助于对超冷费米子系统的深度冷却。
为基于超冷原子光晶格的规模化量子计算与模拟奠定了基